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MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS

OF A MULTIVARIATE NORMAL DISTRIBUTION

by

T. W. Anderson and I. 01kmn

Stanford University

ABSTRACT

This paper provides an exposition of several alternative techniques

used to obtain maximum likelihood estimators for the parameters of a

multivariate normal distribution. In particular, matrix differentiation,

matrix transformations and induction are treated. These techniques are used

to derive the maximum likelihood estimators of the covariances of a Wishart

distribution, of the covariances when there are missing observations,

and of the means under a rank constraint. Although the paper is mainly

expository, some of the proofs are new.
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Maximum Likelihood Estimation of the Parameters

of a Multivariate Normal Distribution

1. Introduction.

Consider the maximum likelihood estimation of the mean U and

covariance matrix E of a normal p-variate distribution based on

observations xl, ..., xN . The maximum likelihood estimator of the

mean is the sample mean x, and the logarithm of the concentrated

likelihood is -1 pN log 21T +-1 N times

(1) f(G) - -logIGI - tr G-1 V

or

(2) g(H) - logiHi - tr H V

where

1 N
(3) V (x-)(x-x)

is positive definite, G represents the covariance matrix E and H

the inverse E-  . The problem is to maximize (1) with respect to

positive definite G . Because H is a one-to-one transformation of

G , it is equivalent to maximize (2) with respect to positive definite

H . (This is Lemma 3.2.2 of Anderson (1958).)

We use the notation A > 0 to mean that the symmetric matrix A

is positive definite.
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We shall describe three alternative approaches: differentiation,

matrix transformations, and induction, each of which can be applied

to f(G) or g(H). It is expected that these techniques will be useful

in other problems of maximization. Three examples are given to

illustrate the ideas.

Remark. It is somewhat surprising that at early reference to the fact that the

sample covariance matrix is the maximum likelihood estinator of 7 is

elusive. The general result is implicit in the work of Wilks (1932, p. 476)

dealing with likelihood ratio tests.

2. The Method of Differentiation.

The functions f(G) and g(H) go to as G or H approaches

the boundary of positive definite matrices or as one or more elements

increases without bound. From the facts that logjHi is concave (see

Bellman (1970), p. 128) and tr H is linear, it follows that g(H)

is concave in H > 0 , so that a maximum exists, and it is unique. The

function f(G) is neither concave nor convex. However, since there is

only one solution to the derivative equations, these equations yield the

maximum.

To obtain the derivative equations we use the differential form

-G +E G1
(3) d[f(G)] (2-6) dgij + (tr G71 Ej G-  V) dg} 0 , i< j

where 6 is the Kronecker delta, Eu is a matrix with 1 in the (i,j)th
ij i

position and 0 elsewhere, and Gtj is the cofactor of gJ " This yields

the matrix equation
(4) -C 1 + - V - 0

with the unique solution G = V
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Similarly, using g(H)•,

TH
(5) d[g(H)]I - (2-61ij).Hj dhij - (tr Euj V) dhlj -0 , i < 

which yields the equation V

(6) H - V -0,

with the unique solution H = V -

In essence, this approach applied to f(G) has been discussed by

Smith (1978); the approach applied to g(H) was used by Anderson (1958).

For a more detailed discussion of differentials see Deemer and Olkmn

(1951), or Anderson (1958) p. 310.

3. The Methoe of Matrix Transformations.

The functions f(G) and g(H) can be written in canonical forms.

For any matrix C such that CC' - V, let

"=C-1 Gc1_ •H COHC.

Then (1) and (2) yield

f(G) - log Ivi - - log I1 - tr -'

g(H) - log Ivl - loglil - tr H

Hence we shall take V = I and drop the tilde.
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We use three well-known representations for a positive definite

matrix, namely,

(i) H-TT' , 

where T is upper (or lower) triangular;

(ii) H - D R D ,

where D - diag(A.i, ... , X-) , and R = (rj) is a correlation

matrix, (i.e., rit - 1);

(iii) H= r Dd re

where r is orthogonal, Dd - diag(dl, ..., d ) and d ... , d P

are the characteristic roots of H.

In each case the problem reduces to

(6) max (log z - Z).
z>O

The function log a - z is concave and has the unique maxlmum of -1

at z - 1.

3.1. Transformation to Rectangular Coordinates: H = TT' . Now the

maxinization of g(H) becomes

(7) Max ( (log - - t2 2
tit iittj I Ij

i<j

Clearly, the maximum over tlj, I < J occurs at t j -0, so that

(7) reduces to a sun of terms like (6).
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3.2. Transformation to a Correlation Matrix: H = D R D . Now the

maximization of g(H) becomes

(8) Max {I (log hii - hit) + log IRII.
h it>0 i

R>0

Since R is a correlation matrix, by Hadamard's determinant inequality

IRI < ~r i - 1, with equality for R - 1. Alternatively, we can write

R - UU', where U is upper triangular with 1 u2j -; consequently,
i-ii

I RI - 1 u 2 < 1. Now (8) reduces to a sum of terms like (6).

3.3. Transformation to Characteristic Roots: H =r Dd r' . Now the maxi-

mization of g(H) becomes

Max {I (log di di)},
d i>0 i

which is of the form (6). The transformation 3.3 has been suggested by

Anderson (1958) Problem 4, Chapter 3, and has been used by Watson (1964);

it is the essence of the method of Khatri (1979) and Tamhane (1979).

4. The Method of Induction.

Write

"H 1, -12

H H1 1 :p 1 p 1

! H21 h22/

then the maximization of g(H) becomes

A9. At



6.

i -1 }
Max {(1og11 111 - tr Hl) + 1og(h22 - l21HllH12) - h22

H ll'H12'h2221112 2

>0

The maximum with respect to K21 is achieved at H - 0 for any

H 11  and h221 which yields

Max {(loRIHlI - tr HI) + (log h2 2 - h22

R 1> 0.
h2 2 

>0

The result now follows from the inductive hypothesis.

5. Other Methods.

If f(G) and g(R) are not put into canonical form several other

methods may be employed. There is a nonsingular matrix Q such that

V - QQ', G - AQ' ,

where D is a diagonal matrix with diagonal elements the roots of

IG - )VI - 0. Then

f(G)-- 2 logQ,-j (log AI + .)

which is maximiged for A, = 1; that is, DX A I, C V.

Another method invokes a theorem of von Neumaum (1937):

p
I
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where n1> ...> np are the ordered characteristic roots of H and

VI> ...> V are the ordered characteristic roots of B; equality is
P

attained when the characteristic vectors of H are identical to those

of V We have

g(H) < (log n iV

i~ -i qP-i+l)

with equality when the characteristic vectors of H are identical to

those of V. Then (log Ti - n vp-i+i)is maximized at n, - 1/"p-ii *

i - 1, ..., p. Thus g(H) is maximized at f - V-1 . This method is

used by Theobald (1975).

6. A Modified Model with Missing or Additional Observations.

Suppose a sample of size N is observed from a p-variate normal

distribution with covariance matrix E, and an additional sample of size

M is observed on the first k (out of p) variates. Alternatively,

this model can be viewed as a sample of size N+M from a p-variate normal

distribution, where M observations on the last p-k (out of p) variates

are missing. This problem was considered by Anderson (1957) and in

another context by 01kin and Sylvan (1977).

The problem now is to

(9) Max f- N logjGl - tr G-1V - M logl l -tr iW ,
11 11

G>O

1G11 G12~
where G G11 : k x k, V: p x p and W: k x k are positivewhee G= 21 G22[' G 1

definite.
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6.1. Reduction to a Canonical Form. In terms of H G- I  the problem

becomes

(10) Max (N logHI- tr H V + M log1H - 1 2H 2 H 2 1  - tr(H11  H H1 2 H22H 2 )W
H>O 211

- { N logjH 22 1 + (N + M) log1H 11 - H12H22H211- tr PlV 11 - tr H
H> 0

.... V 11 12 HI2112H 21)

tr H21 V12 tr H2 2 V2 2  tr(H H1 1 W"

6.2. Transformation.

One can think of this likelihood as composed of the marginal like-

lihood of the N + H observations on the k variables and the conditional

likelihood function of the N observations on the p - k variables

conditional on the N observations on the k variables. The appropriate

parameters are

-HH'-1 =K.

H 11 H1 2H22H21 = J, H22H21 K H22  H22

(If H - then J- -1 -G -1 -1

K = - G2 1G1 l, H22 
= (G2 2-G21G1 1G12) .)

The corresponding transformation of the covariance matrix of N observations

is

22 2 1 1 1 1 2  V2 1V=1 1 E. Vll VIl

v___-v__Vu,2_-_. V.l- . .
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Then (10) is transformed to

(11) Max (N log H22 - tr H2 2F + (N+M) loRIJI - tr J(V + W)
H 2 2>0,J>O,K

tr H22 (K+E)V 1 (K+E) ).

The last term is nonpositive because H22 and V are positive definite;

A-1

its maximum of 0 occurs at K- E - V2 1V ll. Then (11) becomes the

sum of two terms like (2). The maximum over H22 > 0 and J > 0 occurs at

H2 2 " NF -  and 3 - (N+M)(V 11+W)

It might be noted that this last analysis is applicable to the

following problem. Given a matrix X with regression KZ and covariance

matrix H 22 the log likelihood function is (11) with J - 0,

E - X'Z(Z'Z) - 1  and F - X'X - EZ'ZE'

6.3. Differentiation.

We now solve (9) by differentiation; this alternative may have some

intrinsic interest. Using differential forms, we obtain

G* GCi _I ) dJaij 11 E J G11W

(2-6ii) gi+(tr G - M 11 + daij tr ( i0,

I < j , where A - G1  and A* is the cofactor of aij in A. This

yields the matrix equation

1 - 1

S(12) -NG i  +  G-1IvG "I -  1 + 11O
0 0 0"Mi
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Pre- and post-multiplication by G in (12) yields

G I G

(13) -NG +V - M G G + G 0 =

0 1 0

which simplifies to the set of equations

(14a) -NGII + VII - MGII + W O,

(14b) -NG1 2 + V1 2 - MG12 + WGIG1 2 =0,

(14c) -NG22 + -"MG2 1 GI + G21G WGI 2

The equations (14) can be solved in sequence to yield

1(15a) G1 "- (Vn+ ),

A 1
(15b) G12 - W (V+W)V 11 12 ,

(15c) G2 2  +V2 2  -N-- V2V WVI 1V M -1
22 N 22 1F1 11 12 - )V 2 1v 1 1 V 1 2

7. A Problem of Rank.

Let the N columns of X and the M columns of Y be indepen-

dently distributed according to a p-variate normal distribution with

covariance matrix E and EX - 0, EY - 4 , where I is of rank

r < p < M . This model is considered by Anderson (1951).

I
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To obtain the maximum likelihood estimators of . and t we

start with the likelihood function

1 (1
(16) c exp{- - tr £[X X' + (¥-)(-')

where c is a normalizing constant. From Sections 1. 2, and 3, the

maximum of (16) with respect to E (for fixed t) in

A

F [X X'+ (Y - ) (Y -Y]/( )

so that we need to determine

(17) min -" 1 X'+ ( -X ( ) (Y -

- Min Ix X'11I + (X X')';(Y-0)(Y-4)'(X X') - '

To simplify notation, write

(18) Y* (XX') - Y , 4- (Xx') -  ,

then (17) becomes (except for the term Ix X'I)

(19) Hin II + Cry-4) (y- ).

Since 4 : p x M is of rank r, we can write

(20) - IC 1 T2 ) (0 0( ) A T1A1
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where (T 1 T2 ): p x p, T 1 p x r; A - M x, A,: r x H and

is orthogonal. In the representation (20), $ T T1 T'1  If T1  Tl)
1.21

where Tl 1 : r x r is lower triangular with positive diagonal elements,

then the representation 4'- T1 AI  is unique.

In (20) note that

(21) jI + (Y - 0) (y -y'

I + iY'i+ TT' -T1Y'- j ' '
p

- 1(1p + Ti'-YT'1Y')4(Tl - ix)(T -

- + y AA 2Y'+ (T1 - YAI)(T 1 - YA)

Since I + Y A2A2y' is positive definite, the minimum of (21) over T1

is achieved at !Al. in which case we need to determine
~A

(22) Mi n i + Y A;A 2Y' " lin IINr + A2'A AMi
A2  A2

Min IA2(IN-r + Y'Y)AI .
A2

The minimum of (22) iS Jip At where A1 >  > Ar+l i ~ p

are the ordered characteristic roots of I + Y'Y * I + YXXl)'IY , that

is, the roots of I(X'X + y'y) - x'X - 0 . (See, e.g., Bellman (1970),
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Theorem 10, p. 132.) The minimum is attained at

A2 ' (Cr+l, ... , cp)

where c1  is the vector satisfying (I + Y'O(X')- )ci = c and

clc = 1.
i i

Combining our results we obtain as the maximized likelihood

(23) c e- j p (N+Mp(N+M)

jXX' i(N+M)( Pj (N+M)(r+l i

The model (16) is considered by Healy (1979). His procedure is to

first make a series of transformations motivated by the rank condition

on 4 , which transforms the model to a canonical form, and then to

carry out the maximizations. However, by first maximizing with respect

to the covariances (as in the above derivation), the required transforma-

tions (and proof) become considerably simpler.
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